

Roll No.					

- Please check that this questionnaire contains **15** printed pages.
- Code A, B or C given on the right hand top corner of the questionnaire should be written on the answer sheet in the space provided.
- Please check that this questionnaire contains **60** questions.

37TH ARYABHATTA INTER-SCHOOL MATHEMATICS COMPETITION – 2020

CLASS - XI

Time Allowed: 2 Hours

Max. Marks: 100

GENERAL INSTRUCTIONS:

- 1. Do not write your name on the questionnaire.
- 2. Write your roll no. on the questionnaire and the Answer Sheet in the space provided.
- 3. All the questions are compulsory.
- 4. Read questions carefully; think twice before you write the answer. No overwriting or cutting is allowed on the Answer Sheet. Another copy of the questionnaire or answer sheet will not be provided.
- 5. Do your rough work in the space provided in the questionnaire.
- 6. The questionnaire contains three sections. **Section A** contains 30 Multiple Choice Questions of 1mark each, **Section B** contains 20 Free Response Type Questions of 2 marks each and **Section C** contains 10 Free Response Type Questions of 3 marks each.
- 7. No working or descriptive answers of any question is to be given. Only the Answers are to be written on the Separate Answer sheet provided to you.
- 8. Use Blue or Black pens to write the answer on the Answer Sheet.
- 9. Answers should be written clearly in the space provided on the Answer sheet.
- 10. Use of calculator is not allowed.

SECTION-A

Write the correct option (A, B, C or D) in the Answer sheet.

		SPACE FO	OR THE ROUGH W	ORK
	(A) $-1+i$	(B) $-1-i$	(C) $2+2i$	(D) None of these
5.	The value of (i)	$(i^{-25} + i^{18})$ is		
	(A) 2	(B) 4	(C) 1	(D) None of these
4.	The minimum v	alue of $4^{x} + 4^{1-x}, x \in \mathbb{R}$, i	S	
	(A) 97	(B) 98	(C) 96	(D) 99
3.	The number of i	rrational terms in the exp	pansion of $\left(\sqrt[8]{5} + \sqrt[6]{2}\right)^{1}$	is is
	(A) 3	(B) 6	(C) 0	(D) 12
2.	The smallest pos	sitive integral value of <i>n</i>	for which $(1+\sqrt{3}i)^{\frac{1}{2}}$	is real is
	(A) 381	(B) 471	(C) 281	(D) None of these
1.	The largest term terms is	common to the sequence	$es 1, 11, 21, 31, \dots to$	o100 terms and 31, 36, 41, 46, to 100

6.	Let $z = \frac{\cos \theta + i \sin \theta}{\cos \theta - i \sin \theta}$,	$\frac{\pi}{4} < \theta < \frac{\pi}{2}$. then arg z is	5	
	(A) 2 <i>θ</i>	(B) $2\theta - \pi$	(C) $\pi + 2\theta$	(D) None of these
7.	If $\sin\theta + \cos ec\theta = 2$ th	en the value of $\sin^8\theta$ +	$\cos ec\theta^8 \theta$ is equal to	
	(A) 2	(B) 2^8	(C) 2^4	(D) None of these
8.	The longest side of a shortest side. If the per side (in cm) is	triangle is twice the s imeter of the triangle i	shortest side and the t s atleast 166 cm, then t	hird side is 2 cm longer than the he minimum length of the shortest
	(A) 52	(B) 48	(C) 41	(D) None of these
9.	If A= $\left\{ x : x \in Z, 2^{(x+1)(x^2)} \right\}$	(x+x-2) = 1 and $-3 < x < 3$	}, then the number of s	ubsets of A is
	(A) 32	(B) 16	(C) 8	(D) None of these
10.	The equations of the t	hree sides of a triangle	e are $x = 2, y + 1 = 0$ an	d $x+2y=4$. The coordinates of the
	circumcenter of the tria	angle are		
	(A)(4,0)	(B)(2,-1)	(C) (0, 4)	(D) None of these
		SPACE FOR T	HE ROUGH WORK	

11.	The value of $\sum_{r=1}^{10} r$.	${}^{r}P_{r}$ is		
	(A) ${}^{11}P_{11}$	(B) ${}^{11}P_{11}-1$	(C) ${}^{11}P_{11}$ +1	(D) None of these
12.	In the ellipse $x^2 +$	$3y^2 = 9$, the distance b	between the foci is	
	(A) $\sqrt{6}$	(B) 3	(C) $2\sqrt{6}$	(D) None of these
13.	Let <i>x b</i> e the AM a	nd y , z be two GMs b	etween two positive nur	nbers, then $\frac{y^3 + z^3}{xyz}$ is equal to
	(A) 1	(B) 2	(C) 0.5	(D) None of these
14.	If $xe^{xy} - y = \sin^2 x$	x then $\frac{dy}{dx}$ at $x = 0$ is		
	(A) 0	(B)1	(C) –1	(D) None of these
15.	Two cards are dra	wn at random from a p	back of 52 cards. The pro-	obability of getting at least a spade and
	an ace is	_		
	(A) $\frac{1}{52}$ (1)	B) $\frac{4}{21}$	(C) $\frac{1}{26}$	(D) None of these
		SPACE FO	OR THE ROUGH WO	RK

16.	Let z be a complex num the value of ' a ' cannot	nber such that the ima	ginary part of z is non	zero and $a = z^2 + z + 1$ is real, then			
	(A) –1	(B) 1/3	(C) 3/4	(D) None of these			
17.	The set of real values of	of x satisfying $ x-1 -$	$1 \leq 1$ is				
	(A) [-1,3]	(B) [0,2]	(C) [-1,1]	(D) None of these			
18.	$\lim_{x \to 2} \frac{\sqrt{x-2} + \sqrt{x} - \sqrt{2}}{\sqrt{x^2 - 4}}$	is equal to					
	(A) 0.5	(B) 1	(C) 2	(D) None of these			
19.	If the roots of the equat	tion $x^2 - 2ax + a^2 + a - a$	3=0 are less than 3 the	hen			
	(A) $a < 2$	(B) $2 \le a \le 3$	(C) $3 < a \le 4$	(D) None of these			
20.	If the r th term is the mid	ddle term in the expans	sion of $\left(x^2 - \frac{1}{2x}\right)^{20}$ the	en the $(r+3)^{\text{th}}$ term is			
	(A) ${}^{20}C_{14}.\frac{1}{2^{14}}.x$	(B) ${}^{20}C_{12}.\frac{1}{2^{12}}.x^2$	(C) $-{}^{20}C_7 \cdot \frac{1}{2^{13}} \cdot x$	(D) None of these			
	SPACE FOR THE ROUGH WORK						

21.	If the eccentricity of the	e hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} =$	1 is <i>e</i> then the eccentric	city of the hyperbola $\frac{x^2}{b^2} - \frac{y^2}{a^2} = 1$ is
	(A) <i>e</i>	(B) $\frac{e}{\sqrt{e^2-1}}$	(C) $e\sqrt{e^2-1}$	(D) None of these
22.	$\lim_{x \to 0} \frac{x - \tan x}{x \tan x}$ is equal to)		
	(A) 0	(B) 1	(C) 0.5	(D) None of these
23.	Two distinct numbers a	are selected at random	from the first 12 natu	aral numbers. The probability that
	the sum will be divisibl	e by 3 is		1 2
	(A) $\frac{1}{3}$	(B) $\frac{23}{66}$	(C) $\frac{1}{2}$	(D) None of these
24.	The sum of n terms of t	he series $S = \frac{1}{2} + \frac{3}{4} + \frac{7}{8}$	$+\frac{15}{16}+\ldots$ is equal to	
	(A) $2^n - n + 1$	(B) $1 - 2^{-n}$	(C) $2^{-n} + n - 1$	(D) None of these
25.	The number of ways i (A) 60	n which three letters (B) 56	can be posted in five (C) 85	(D) None of these

26.	If $X = \{4^n - 3n - 1 : n \in N\}$ and $Y = \{9(n-1) : n \in N\}$	where N is the set of natural numbers then
	$X \cup Y$ is equal to	

		SPACE FO	OR THE ROUGH V	VORK
	(A) –220	(B) 219	(C) 211	(D) None of these
	having 3 or 1	more elements is		
30.	Let A and E	B be two sets containing 2	and 4 elements resp	ectively. The number of subsets of $A \times B$
	(A) 2	(B) 3	(C) 4	(D) None of these
29.	If the mean of	deviation about the median of	of the numbers x , $2x$,	$3x, \ldots, 50x$ is 50, then x is equal to
	(A) 5	(B) 10	(C) 8	(D) None of these
	polygon. If	$T_{n+1} - T_n = 10$, then n is equa	l to	
28.	Let T_n be the	he sum of all possible tria	angles formed by jo	ining the vertices of an n-sided regular
	(A) $\frac{1}{6}$	(B) $\frac{1}{36}$	(C) $\frac{1}{18}$	(D) None of these
27.	Three idention	cal dice are rolled. The prob	ability that the same	number will appear on each of them is
	(A) X	(B) Y–X	(C) Y	(D) None of these

SECTION-B

Write the Answers only in the space provided on the Answer sheet.

- 31. Find the equation of the straight line which passes through the point (-4, 3) such that the portion of the line between the axes is divided internally by the point in the ratio 5 : 3.
- 32. Find the polar form of the complex number $z = (1+7i)(2-i)^{-2}$.
- 33. Find the most general solution of the equation $\sec^2 x = \sqrt{2} (1 \tan^2 x)$.

34. If
$$a f(x+1) + b f\left(\frac{1}{x+1}\right) = x, x \neq -1, a \neq b$$
, then find $f(2)$.

- 35. Find the solution set for the following system of inequalities: $\frac{2x+1}{7x-1} > 5$, $\frac{x+7}{x-8} > 2$
- 36. The letters of the word COCHIN are permuted and all the permutations are arranged in an alphabetical order as in an English Dictionary. Find the number of words that appear before the word COCHIN.
- 37. In a \triangle ABC, the sides *a*, *b* and *c* are such that they are the roots of $x^3 11x^2 + 38x 40 = 0$. Then find $\cos A \cos B \cos C$

the value of
$$\frac{\cos A}{a} + \frac{\cos B}{b} + \frac{\cos C}{c}$$

38. Find the largest set of real values of x for which $f(x) = \sqrt{(x+2)(5-x)} - \frac{1}{\sqrt{x^2-4}}$ is a real function.

- 39. Find the number of words that can be formed from the letters of the word 'PERMUTATIONS' if there are always 4 letters between P and T. (Write the answer in whole number)
- 40. Find the value of $\sqrt{-3-4i} + \sqrt{3+4i}$ by taking the value of a square root with positive real part only.
- 41. Find the sum of all the numbers of four different digits that can be formed by the digits 0, 1, 2 and 3.
- 42. Find the term independent of x in the expansion of $(1-x)^2 \cdot \left(x+\frac{1}{x}\right)^{10}$. (Write the answer in whole number)

- 43. Find the value of $\sin 78^\circ \sin 66^\circ \sin 42^\circ + \sin 6^\circ$.
- 44. If z is a complex number satisfying the relation |z+1| = z + 2(1+i), find z.
- 45. Let $f(\theta) = \frac{\cot \theta}{1 + \cot \theta}$ and $\alpha + \beta = \frac{5\pi}{4}$, then find the value of $f(\alpha) \cdot f(\beta)$.
- 46. Find the number of arrangements of the letters of the word MATHEMATICS taken four letters at a time.

- 47. If $\sin \alpha$, 1 and $\cos 2\alpha$ are in GP, find the general value of α .
- 48. The intercept on the line y = x by the circle $x^2 + y^2 2x = 0$ is AB. Find the equation of the circle with AB as the diameter.

49. If
$$y = f\left(\frac{2x-1}{x^2+1}\right)$$
 and $f'(x) = \sin x^2$, find $\frac{dy}{dx}$.

50. A circular ring of radius 3 cm is suspended horizontally from a point 4cm vertically above the centre by 4 strings attached at equal intervals to its circumference. If the angle is between two consecutive string is α , then find cos α .

SECTION-C

Write the Answers only in the space provided on the Answer sheet.

- 51. Find the value of *n* if ${}^{n+1}C_{r+1} : {}^{n}C_{r} : {}^{n-1}C_{r-1} = 11:6:3.$
- 52. If the mid points of the sides of triangle are (1, 4), (3, 2) and (-1, 3), then find the sum of the lengths of the three medians.
- 53. A bag contains 3 black, 4 white and 2 red balls, all the balls being different. Find the number of selections of atmost 6 balls containing balls of all the colours.
- 54. The equations of the sides AB, BC and CA of the \triangle ABC are y x = 2, x + 2y = 1 and 3x + y + 5 = 0 respectively. Find the equation of the altitude through B.

58. The sum of the coefficients of first three terms in $\left(x - \frac{3}{x^2}\right)^m$, $x \neq 0$, *m* being natural number is 559.

Find the value of *m*.

- 59. The mean and standard deviation of a group of 100 observations were found to be 20 and 3 respectively. Later on it was found that three observations 21, 21 and 18 were incorrect. Find the standard deviation (correct upto 2 places of decimal) if the incorrect observations are omitted.
- 60. If $2 + \sqrt{3}i$ is a root of the equation $x^2 + px + q = 0$, where $p, q \in \mathbb{R}$, find p + q.