DOTT	NIO	
ROLL	NO	

ARYABHATTA INTER-SCHOOL MATHS COMPETITION-2002

SUMMER FIELDS SCHOOL (MIDDLE) CLASS VIII

Time Allowed : $2\frac{1}{2}$ Hrs.

M.M.: 100

GENERAL INSTRUCTIONS:

- 1. Participants should not write his/her name on the questionnaire.
- Write your Roll No. on all pages of the paper.
- 3. All questions are compulsory.
- Read questions carefully. Think twice before you write the answer.
 Another copy of the questionnaire will not be provided.
- 5. Marks are indicated at the end of each question.
- 6. Do your rough work on the separate sheet supplied to you and pin up the same with the questionnaire.
- 7. Use of eraser is not allowed.

PART-I

Answers to Question Nos. 1, 2 and 3 are to be given in the space provided in the questions.

- 1. Fill in the blanks:
 - (i) Find the missing number in the series:

$$1, \frac{3}{4}, \frac{5}{16}, \dots, \frac{9}{256}$$

- (ii) The length of the longest rod that can be put in a room 12m long, 9m wide and 8m high is.......
- (iii) If $3^{-n+1} = \sqrt[4]{81^{-3}}$ then $3^{n-1} = \dots$
- (iv) $(2a-b-c)^3 + (2b-c-a)^3 + (2c-a-b)^3 = \dots$
- (v) 250ml: 2 litres =: : 16.

(vi)	63	kmph =	=		m/	sec.
------	----	--------	---	--	----	------

ROLL NO.....

- (vii) When 25 is subtracted from 25% of a number, we get 25. The number is......
- (ix) $\triangle ABC$ is similar to $\triangle PQR$ and $\angle A = 60^{\circ}$, $\angle B = 40^{\circ}$ then $\angle R = \dots$.
- (x) The incentre of a triangle is.....from the sides of the triangle.

2. State True or False:

- (i) The angles of a triangle are in the ratio 1:2:3, then the triangle is a right triangle.
- (ii) The H.C.F of any four numbers is always a factor of their L.C.M.
- (iii) Every rhombus is a square.
- (iv) If $2^x = a$, $3^x = b$ and $6^{2x} = c$ then $c = a^2 b^2$.
- (v) The difference between the squares of two consecutive numbers is always the sum of the numbers.
- (vi) Mean proportional of 4 and 36 is $2x^2 + 4$ then x is 2.

(vii)
$$2 + \frac{1}{2 + \frac{1}{2}} = \frac{5}{12}$$

- (viii) The perimeter of a square, the sum of the lengths of whose diagonals is 144 cm is $144 \sqrt{2} \text{ cm}$.
- (ix) 1 is the smallest prime number.
- (x) $(x+5)^2 (x+1)^2$ is a multiple of 8 where x is a natural number.
- 3. Tick (√) against the correct answer:

(i)
$$\sqrt{176 - \sqrt{25 + \sqrt{576}}} = \dots$$

(a) 12

(b) 13

(c) 24

(d) 11.

(ii) In Figure, ABCD is a square. $AF = \frac{1}{2}AB$, $BE = \frac{1}{3}BC$, $AC = 36\sqrt{2}$, then area of $\triangle BEF$ is

(a) 72 cm^2

(b) 144 cm²

(c) 108 cm²

- (d) $216\sqrt{2} \text{ cm}^2$
- (iii) 0.02 63 is equal to
 - (a) $\frac{261}{9000}$

(b) $\frac{263}{9990}$

(c) $\frac{261}{9900}$

- $(d) \frac{263}{10000}$
- (iv) If $x + \frac{1}{x} = 3$ then $\frac{x}{x^2 + 1}$ is
 - (a) 9

(b) $\frac{1}{3}$

(c) 13

- (d) $\frac{1}{13}$
- (v) If a number is increased by 10% and then decreased by 10%, the number
 - (a) remains same
- (b) decreases by 1%
- (c) increases by 1%
- (d) increases by 0.1%.
- (vi) How many 3-digit numbers can be formed by using the digits 0, 2, 3 without repetition.
 - (a) 4

(b) 3

(c) 5

- (d) 6.
- (vii) The volume of a largest sphere cut out of a cube of edge 14 cm is

			ROLL NO
(a)	$\frac{1372}{3}\pi\mathrm{cm}^3$	(b)	$\frac{343}{3} \pi \mathrm{cm}^3$
(c)	$\frac{686}{3}\pi\mathrm{cm}^3$	(d)	$343~\pi~\mathrm{cm}^3$
iii) A	n angle is 20° less than $\frac{1}{4}$ th	of its	s supplement. The complement
	the angle is		
(a)) 30°	(b)	50°
(c)	70°	(d)	10°
x) T			st perfect square of 5-digits and is
(a) 89	(b)	12 cm.
(c)	189	(d)	199
c) If	PT is a tangent to a circle $P=17$ cm, $OT=15$ cm. Then	rcle n <i>PT</i>	at T whose centre is O and is equal to
(a) 8 cm	(b)	12 cm.
(c)) 14 cm	(d)	18 cm.
	PART	— II	A contract of the contract of
	and the largest number whi		vides 1630, 525 and 1280 leav- cively. (2)
ii) P	Prove that:		
(x	$(a^{-b})^{\frac{1}{ab}} \times (x^{b-c})^{\frac{1}{bc}} \times (x^{c-a})^{\frac{1}{ca}} = 1$		(2)
iii) If	$\int x^2 + \frac{1}{x^2} = 7$ then find $x^3 + \frac{1}{x^3}$		(3)
(iv) F	and $\sqrt{\frac{3}{7}}$ upto 3-places of dec	cima	ls. (3)

(ii) The cost of 50 copies of 92 pages each is Rs. 500. What is cost of 115 copies of 60 pages each? '(2)

(2)

(i) Factorize $x^8 + \frac{1}{x^8} - 2$.

(iii) Solve
$$\frac{1 - \frac{1 + \frac{1 - x}{2}}{3}}{4} = 1$$

- (iv) If $a^2 + b^2 + c^2 ab bc ca = 0$ then prove that a = b = c. (3)
- 6. (i) A cyclist crosses a bridge 495 m long in 3.3 minutes. Find his speed in kmph.
 - (ii) By what number should $\left(-\frac{3}{5}\right)^5$ be divided to get $\left(\frac{3}{5}\right)^{-2}$? (2)
 - (iii) Three numbers are in the ratio 2:3:4. The sum of their cubes is 0.334125. Find the numbers.
 - (iv) Five years ago, a man was seven times as old as his son. After 5 years, he will be 3 times as old as his son. Find their present ages.
- 7. (i) In \triangle ABC, AB = BC, \angle A = 40°. Find \angle B and \angle C. (2)
 - (ii) Find the value of x in the adjoining figure. (2)

(iii) In Figure, ABC is a triangle, in which AB = AC, BE and CF are the bisectors of $\angle B$ and $\angle C$. Prove that BE = CF. (3)

- (iv) A, B and C can do a work in 6, 8 and 12 days respectively, each working alone. B and C work together for 2 days and then A replaces C. In how much time will the total work finish? (3)
- 8. (i) In Figure, PA, PC and QR are tangents to the circle. If PA = 5 cm. Find the perimeter of ΔPQR . (2)

(ii) A line l intersects two concentric circles at points A, C, D and B.
 Prove that AC = DB.

- (iii) A radioactive substance decays at a constant rate in such a way that it reduces to 50% in 16000 years. In how many years, will it reduce to 12.5%?
- (iv) OABC is a rhombus whose three vertices A, B and C lie on a circle with centre O. If the radius of the circle is 20 cm, find the area of the rhombus.
 (3)

9. (i) In Figure, $AB \mid \mid EF, DE \mid \mid BC$, and $\angle ABC = 60^{\circ}$, find $\angle DEF(2)$

- (ii) Simplify: $\frac{2\sqrt{2} \ a^3 + 3\sqrt{3} \ b^3 c^3 + 3\sqrt{6} \ abc}{(\sqrt{2} \ a + \sqrt{3} \ b c)}$ (3)
- (iii) Three horses were purchased for Rs. 9000 each. One horse was sold at a loss of 10% and the other at a profit of 5%. At what price should the third horse be sold so as to get 20% profit on the whole transaction. Find also the gain % on the third horse. (5)
- 10. (i) A solid is in the form of a right circular cone mounted on a hemisphere. The radius of the hemisphere is 3.5 cm and the height of the cone is 4 cm. The solid is placed in a cylinderical tub, full of water, in such a way that the whole solid is submerged in water. If the radius of the cylinder is 5 cm and its height is 10.5 cm, find the volume of water left in the cyclinderical tub.(5)
 - (ii) The marks of 10 students in a test are 40, 35, 42, 36, 18, 32, 28, 48, 30, 24.
 - (a) Find the range of the data.
 - (b) Find the mean of the data.
 - (c) Find the correct mean if the marks of a student whose actual marks were 38, were taken as 36, by mistake.
 - (d) If each of the marks are increased by 2, find the new mean.