KAILASH COLONY, NEW DELHI-110048

Roll No.							

- Please check that this questionnaire contains 9 printed pages.
- Please check that this questionnaire contains 25 questions in Part-A and 15 questions in Part-B.

29th ARYABHATTA INTER-SCHOOL MATHEMATICS COMPETITION-2012
CLASS - V

Time Allowed: 2 Hours
Max. Marks: 100

GENERAL INSTRUCTIONS :

1. Participant should not write his/her name on the questionnaire.
2. Write your Roll no. on all pages of the paper.
3. All questions are compulsory.
4. Read questions carefully, think twice before you write the answer. Another copy of the questionnaire will not be provided.
5. Marks are indicated at the end of each question.
6. Write the answer within the prescribed limited space.
7. Do your rough work on a sheet pinned up with the questionnaire.
8. Overwriting is not allowed.

PART A

Q1. The product of $\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)-------\left(1-\frac{1}{100}\right)=$ \qquad

Q2. Complete the series:
$1,4,13,28,49$, \qquad ,

Q3. In a certain year, January had exactly four Tuesdays and five Saturdays. The day on which January 1 falls that year is \qquad .

Q4. A tank containing 19.62 litres of water can be emptied in 10min. Amount of water that can be emptied in 1 sec is \qquad litres.

Q5. The fraction halfway between $\frac{1}{5}$ and $\frac{1}{3}$ is \qquad .

Q6. Placing no more than one X in each small square, the greatest number of Xs that can be put in the grid without getting three Xs in a row vertically, horizontally, or a diagonally is \qquad .

Q7. The number of 3 digit numbers divisible by 13 is \qquad .

Q8. Greeting cards are sold in packs of 6, 8 and 24 cards. The minimum number of packs needed to buy exactly 110 cards is \qquad .

Q9. Nine flag poles have to be equally placed in a straight line along one side of the school ground. The distance between the first pole and the sixth pole is 90 m . The distance between the first and the last pole is \qquad .
\qquad

Q10. Date and Time 2012 minutes after the beginning of 19th January, 2012 was
\qquad _.

Q11. The difference between the first 1591 even numbers and 1591 odd numbers is \qquad .
Q. 12 Use each of the digits 1, 2, 3, 12 only once in the following expression so as to obtain the lowest possible answer.

Q13. A tennis singles tournament had six players. Each player played every other player once with no ties. If the first player won 4 games, second won 3 games, third won 2 games, fourth won 2 games, fifth 2 games, then the sixth player won ___ games.

Q14. A factory packs 48 chocolates in each box. They have 243 boxes to be filled. They have already made 10,000 chocolates. The number of chocolates they have to make more to fill the boxes is \qquad .

Q15. Fill in the empty cells with numbers 1-19 so that the sum of the numbers in each diagonal or vertical row is the same.

[3]

Q16. Neha and Priya were once the same height. Since then Priya has grown 30\% while Neha has grown half as many centimetres as Priya. Priya is now 65 cm tall. Present height of Neha is \qquad .

Q17. There are nine kids seated in a row. The average weight of first five kids is 7 kg 9 gm and the average weight of last five kids in the row is 12 kg 50 gm . If the average weight of all nine kids is $7 \frac{5}{9} \mathrm{~kg}$, then the weight of the kid common to both groups is \qquad .

Q18. For a party, the chef is making 30kg of fruit salad using 25% guavas, 30% apples, and 45% bananas. In anticipation of more guests, he adds 5 kg of apples more to his salad. The percentage of apples in the fruit salad now is \qquad .

Q19. A store normally sells T-shirts at Rs. 100 each. This week the store is offering one T-shirt free for each purchase of four. Samaira needs 7 T-shirts and Naisha needs 8 T-shirts. Money they will save if they purchase together is \qquad -

Q20. Each of the 46 students in a painting class has a box of crayons or a box of poster colours or both crayons and poster colours. 23 students have a box of crayons and 32 students have a box of poster colours. The number of students who have both crayons and poster colours is \qquad .

Q21. Suppose $\frac{1}{5}$ of class V students of a school participate in a maths competition and 0.95 of these students get maths teacher of their choice next year. Only 50% of the class V students who do not participate in the maths competition get the maths teacher of their choice next year. The percentage of students who get the maths teacher of their choice next year is \qquad .

Q22. A hare is running at a rate of 1 m every min, while a tortoise is crawling at a rate of 1 cm every second. In 1 hr , the difference between the distance covered by the hare and the tortoise would be \qquad _.

Q23. At a seminar $\frac{2}{5}$ of the audience were children, $\frac{3}{10}$ were ladies. The rest were men .If the number of children was 28 more than men, then the total number of people in the audience was \qquad .

Q24. Look at the given Time-Table and answer the following questions:

STATION		TRAIN 1	TRAIN 2	TRAIN 3
VENUS	a	0000	1315	0935
	d	0125	1318	0945
MARS	a	0310	1520	1210
	d	0325	1524	1348
JUPITER	a	0715	1815	1611
	d	0748	1825	1615
PLUTO	a	1220	2117	1830
	d	1240	2230	2030

a) The fastest train going to Pluto from Venus is \qquad .
b) Train that takes shortest time from Mars to Pluto is \qquad .
c) The fastest train between Mars and Jupiter is \qquad .
d) The train that takes the longest time from Venus to Jupiter is \qquad .

Q25. Fill in the box with a Roman number so as to make this equation true.
CDXCVII $\mathrm{x} \quad \square=\overline{\mathrm{XXXI}}$ DCCCVIII

PART B

Note: The diagrams are not drawn to scale.

Q1. In the given figure $\angle X Y Z$ is a right angle. The measure of $\angle W Y X$ is
\qquad .

Q2. The length of each side of a triangle and a square is of same measure. The area of this square is 36 sqm.
a) The perimeter of this triangle is \qquad .
b) The kind of figure formed if we join 2 such triangles at the base without overlapping other sides is \qquad .

Q3. The measure of six angles of a heptagon are $126^{\circ}, 109^{\circ}, 168^{\circ}, 132^{\circ}, 189^{\circ}$ and 113°. The measure of the seventh angle is \qquad .

Q4. Number of isosceles triangles that can be formed having a perimeter 23 cm is
\qquad .

Note: Sides have length in whole numbers.
Q5. The measure of the supplement of the smaller angle formed by the hands of a clock that displays a time of four o'clock is \qquad .
\qquad

Q6. The arrow of a spinner points east. Samarth moves it clockwise $3 \frac{1}{4}$ revolutions and then counter clockwise $2 \frac{3}{4}$ revolutions. The direction in which the arrow points at after these two moves is \qquad .

Q7. In order to walk 1.5 km in a rectangular park, Rohan has to walk the length 30 times or walk the perimeter 10 times. The area of this rectangular park is
\qquad .

Q8. There are 36 students in a class. The class teacher wants to make a pie graph to show the club preference of the students in her class. 11 students are in Mathematics club, 9 students in skating club, and 4 students in gymnastics. Out of the remaining, $\frac{1}{4}$ are in painting club. Rest of them are in the dance club. The no. of degrees the teacher will use to show the students in the dance club is
\qquad .

Q9. Neena brought a box of 60 biscuits to the school for giving it for a charity. Aakash brought a bigger box containing same biscuits, but his box was twice as high, twice as wide and twice as long. The number of biscuits in the second box is
\qquad .

Q10. Medhavi made a cylindrical pencil box from this rectangular sheet of paper without overlapping the sides.

11 cm

The diameter of the base of this box is \qquad .
\qquad

Q11. A 2 cm by 3 cm rectangle and 3 cm by 4 cm rectangle are contained within a square without overlapping and the sides of the square are parallel to the sides of the given two rectangles. The smallest possible area of this square is \qquad .

Q12. Eight small cubes each with an edge of 2 cm are glued together to form a bigger cube as shown. Another small cube with an edge of 2 cm is glued at the centre on top of the bigger cube. If the cost of painting is Rs $6 / \mathrm{sq} . \mathrm{cm}$, then the cost of painting this new shape would be \qquad

Q13. A rectangular fish tank has a base that measures 100 cm by 40 cm , and has a height of 50 cm . It is filled with water to a depth of 37 cm . If a rock with a volume of $1000 \mathrm{cu} . \mathrm{cm}$ is placed in the tank, the water level will rise by \qquad cm

Q14. Two circles that share the same centre have radii 14 cm and 28 cm . A rabbit runs along the path starting from point A and finishing at point E . the distance covered by the rabbit is \qquad .

Q15. Look at the given figure and answer the following questions:

a) If $\mathrm{BI}=\mathrm{BK}$, then $\angle \mathrm{IAF}+\angle \mathrm{GEH}=$ \qquad .
b) No. of chords = \qquad .
c) A linear pair of angles is \qquad and \qquad .
d) $\angle \mathrm{IBK}+\angle \mathrm{FGH}+\angle \mathrm{CKH}+\angle \mathrm{IFG}+\angle \mathrm{KCH}+\angle \mathrm{EKA}+\angle \mathrm{BKA}=$ \qquad .
e) Shade a major segment.

